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Principles of DCS

» District cooling is the process of
providing space and process cooling
services to a group of customers.

» It involves two main activities:
*  Production.
* Distribution
* Storage (optional)
** Itincludes three main elements:
* Cooling Source (chiller plant)
* Distribution Network
e Customers’ substations
L)

» Capable of serving Customers of Diverse
Nature:
* Service facilities such as commercial

centers, airports, hospitals, warehouses, dw
ellings and schools

* Industrial facilities such as factories and
production plants
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Why District Cooling?

Qyrrent Status Characteristics of DCS
24 Worldwide, 10% of electricity is used *» Reduces electricity
. for cooling purposes consumption by 25% to 40%

** This percentage is even much higher

Gulf Cooperation Council (GCC) comparing to conventional air

countries, where air conditioning conditioning system.
accounts for 50% of its annual ** Reduces energy consumption
electricity consumption per capita.
** For Qatar: & S ts olobal initiati .
* Electricity consumption was found to ¢ uppqr S globa m,l IZ.:I IVes in
be five times higher than the Middle reducing GHG emissions.
East consumption (16.10 vs. 3.53 MWh . - .
oer capita) ** Improves buildings aesthetics
* Air-conditioning currently uses close to and de5|gn with reduced noise
70% of residential power consumption in buildings
during its peak in summer. . . -
- Features the world's highest per capita ** Higher reliability
emissions with 38.17 tons of CO, per . .
capita ** Lower operating costs




Research Motivation and Scope

** DCS are economically sound alternatives on the long term as it
requires a relatively high capital Investment cost.

** The economics of DCS are not only inherited and granted.
Rather, they are planned and obtained.

** Further savings can be realized depending on the selected structural
and operational settings.
* 60% of systems investment cost is attributed to its distribution network

* This suggests that the structural optimization of a DC network is
paramount and well justified.

Research Scope

To develop optimization models that aids engineers in designing a
minimum-cost DC systems by making optimal structural and operational
decisions.




Daily Demand Pattern
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Central Chiller Plant

Storage Tank
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Problem Description

Chiller Plant

District served by a central chiller plant
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Thermal Aspects
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Hydraulics Aspects
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Methodology

**Two Mixed Integer Programming models for the
optimal design of DCS are developed to aid in
finding:

* The optimal chiller plant size.
* The optimal storage tank size.
* The optimal piping network size and layout.

* The optimal quantities produced and stored during
each period of time

While considering structural and technical constraints
(including temperature and pressure related ones).




Plant Design and Operations (PDO)

Model
*Minimize
2 FCil‘mtyk + Z FCyome9e g, + 2 Vel F, + z vester,
keK heH teT teT

“**Subject to:




Cont. PDO Model
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Network Design (ND) Model

“*Minimize

m.,.m
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Cont. ND Model
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Cont. ND Model

Temperature-related Constraints

_ m V(i,j) EA
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Cont. ND Model

Pressure-related Constraints
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Cont. ND Model
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Computational Experiments

***Both Models were tested and implemented

using a commercial general-purpose solver
(CPLEX)

* Various networks that contained up to 60 nodes
were assumed and solved.

* On average, 3.3 hours of CPU time is required to
solve the largest assumed network.

* The CPU time to reach optimality is very sensitive
to the number of design periods.




Ongoing Research

*** Multiple chiller plants system

(One large plant versus multiple ak T D\E/El
plants: cost, flexibility, reIiabiIityF'/g Q?

*** This involves optimizing %
decisions related to: D\E,/O/ é\j

Thermal Energy Storage Primary Distribution Energy Transfer Station

Chiller Plant
(TES) Network (ETS) I:I Consumer buildings
_ ||
O Central chiller plant
[C] Number of plants [C] Number of tanks Piping Layout Integration with ) storage
Location of each ) Piping Size distribution network
O olant [ Location of each tank pIng by selecting the
’ _ appropriate heat
[C] Plants’ Capacity Plants’ Capacity exchangers (based on
Quantities to be uantities to be pressure limits)
Q
0 produced every stored every period
period of time (e.g. of time (e.g. hour)
hour)




Ongoing Research

*»* Reduce CO2 footprint by using a clever
mix of conventional electricity/gas Q @ 0O T D\E/D

driven chillers and absorption chillers. Er/g Q?

-

¢ Absorption chillers may either use waste

O
heat (e.g. power/desalination plant) or ﬁ{q__‘
solar energy.

. Thermal Energy Storage Primary Distribution Energy Transfer Station
Chiller Plant (TES) Network (ETS)
RO S L] Commomer it
|
ptimal mix o O Central chiller plant
[C] conventional/absorpt  [_] Number of tanks Piping Layout - :
) Integration with
%Qg’t'?o”nt%,f each . Piping Size distribution network @ Storage
O olant [C] Location of each tank by selecting the
) ] appropriate heat
[ Plants’ Capacity Plants’ Capacity exchangers (based on
Quantities to be Quantities to be pressure limits)
O proQuced every stored every period
period of time (e.g. of time (e.g. hour)

hour)




