

District Cooling Workshop

Wednesday 18/6/2014

Towards Cooperative District Cooling Society

KM-DC Workshop Towards Cooperative DC Society

18th June 2014

Qatar District Cooling Company (Qatar Cool)

Issa Qandeel, P.E.

VP-Development

OUTLINE

- DC in Qatar
- Qatar Cool Current & Expansion
 - > Demand Increase from Current Plants
 - New Plant-3 @ WB
 - > Expansion Study @ TPQ Plant
- Current DC Challenges
- Opportunities for Cooperation amongst DC Providers

District Cooling - Qatar

How District Cooling Works FCU / AHU ∆T: 8.9 ° C

DC Brief

- DC has been implemented world-wide since the turn of the 20th century & in the GCC region as early as the 1960's.
- > 550 DE systems in the US, > 40% DE market share in EU.
- Qatar-TR: ~ 800K with > 15 DC systems. In 2017:
 1.5M?

DC & QNV 2030

QNV-2030, 4th Pillar: Environmental Development: "management of the environment such that there is harmony between economic growth, social development and environmental protection." DC:

- Is a sustainable cooling alternative.
- Eliminates noise pollution.
- Reuses local resources (TSE).
- Reduces environmental emissions including air pollution, GHG, and ozone-destroying refrigerants.
- Reduces annual CO2 emissions by about 1.25 ton for each for each 1 TR @ DC Plants.
- Reduces legionella risks.

What Does DC Offer??

- Reduces the required connected electricity by > 50%.
- Reduces > 40% of electricity consumption.
- Saves customers around 25% of the LCC of the AC system.
- Offers lower costs (CAPEX & OPEX): equipment, construction, operations, utilities, profit opportunity.

What Does DC Offer??

- DC saves building space that can be used for more valuable purposes.
- DC enables a greater degree of flexibility, as building needs can go up or down without the need to change the central plant's capacity.
- DC consumes 20-25m3/yr for each 1 TR @ DC Plants!!

District Cooling: Where in Qatar

Qatar Foundation

Katara Lusail

Internal Security Force (ISF)

Mushaireb Barwa City

The Pearl-Qatar

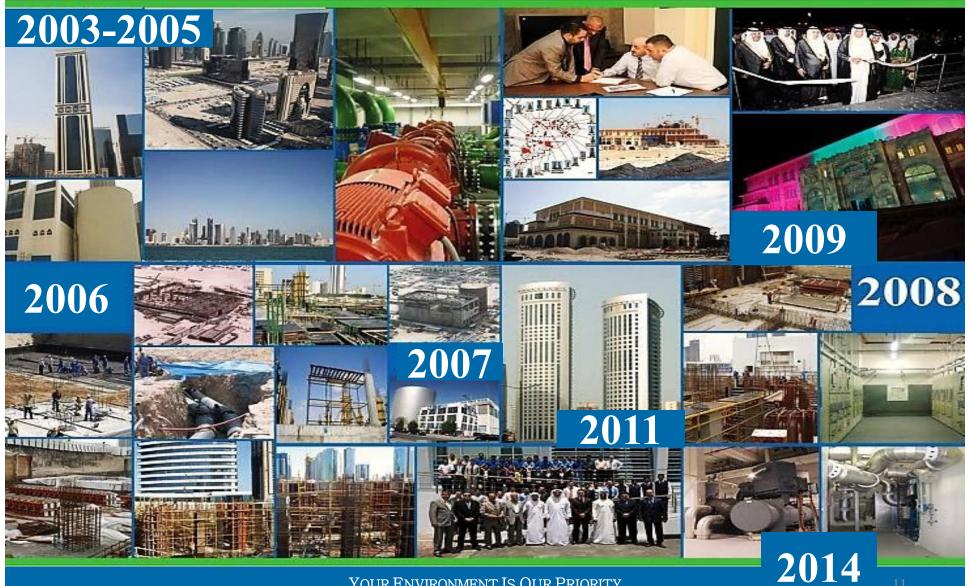
West Bay-Doha

Qatar University

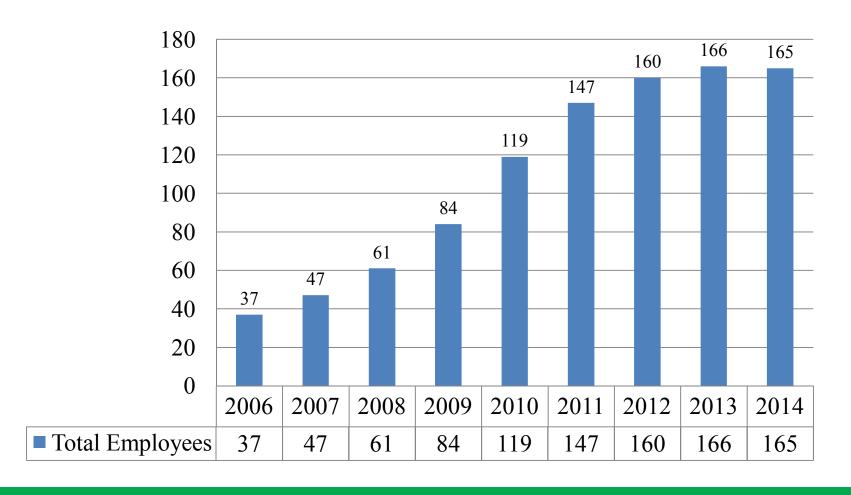
Al Waab City

New Doha International Airport

Al-Gassar, Doha Festival City, Century City **World Cup 2022 – Stadiums**


QP District

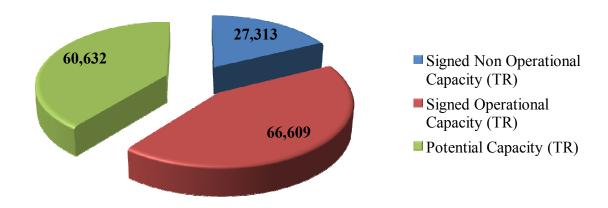
Qatar Cool: Current



Qatar Cool's Employee Growth

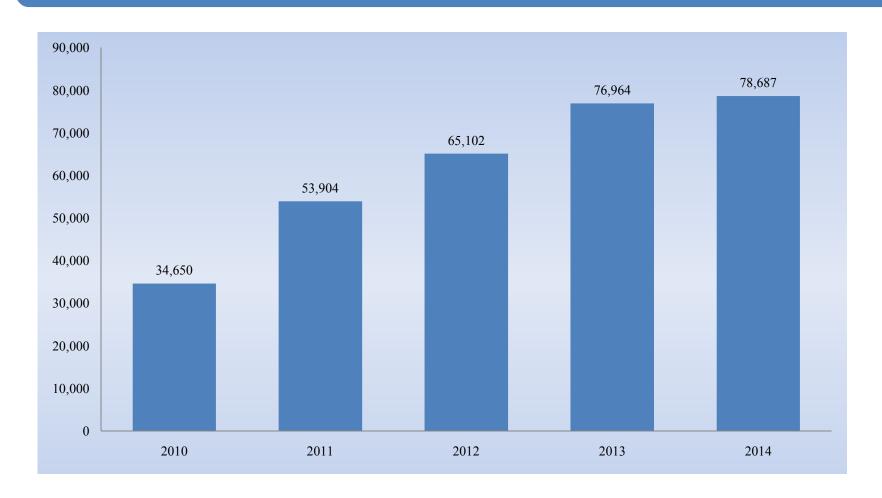


Qatar Cool's Network in West Bay Area

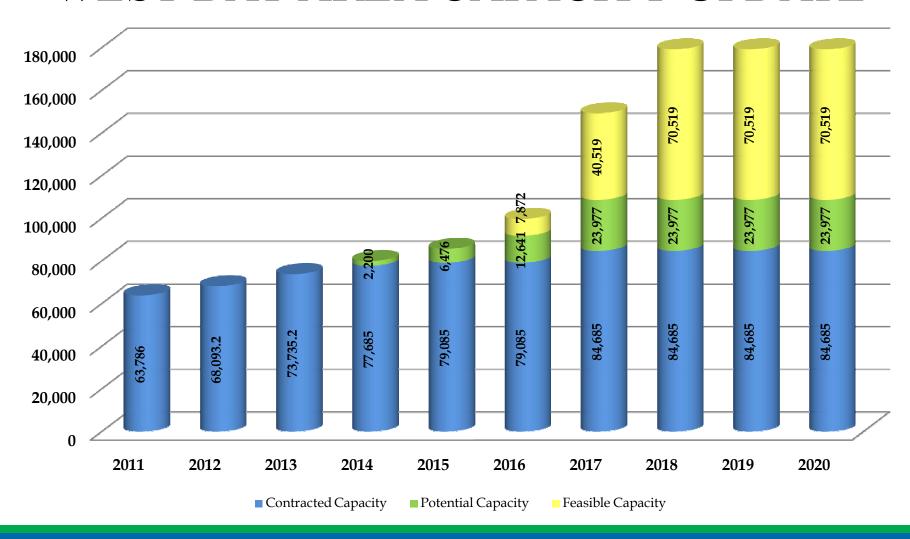

Connected Load – West Bay

Qatar Cool's Operation

WEST BAY, DOHA


No.	Category	Capacity (TR)	% of Total Load
1	Residential	28,186	31
2	Offices	40,539	46
3	Hotels	25,197	23
	Total	93,922 TR	100 %

Connected Load – The Pearl Qatar



Qatar Cool - Expansion

WEST BAY AREA CAPACITY UPDATE

The Pearl-Qatar DC Plant Expansion

- Current load 130K TR: reserved 100%.
- Growing Demand by around 20K TR:
 - ➤ Within the Pearl-Qatar
 - ➤ Outside the Pearl-Qatar

IDEA-2008

"DE SPACE BEYOND NORTH AMERICA CATEGORY"-WORLD WIDE: BRONZE AWARD: NUMBER OF BUILDINGS COMMITTED TO DE. SILVER AWARD: TOTAL BUILDING AREA COMMITTED TO DE.

IDEA-2009

"DE SPACE BEYOND NORTH AMERICA CATEGORY"-WORLD WIDE: GOLD AWARD: NUMBER OF BUILDINGS COMMITTED TO DE. SILVER AWARD: TOTAL BUILDING AREA COMMITTED TO DE.

IDEA-2010

"DE SPACE BEYOND NORTH AMERICA CATEGORY"-WORLD WIDE: **BRONZE AWARD:** TOTAL BUILDING AREA COMMITTED TO DE.

ACEC-2011

THE AMERICAN COUNCIL OF ENGINEERING COMPANIES "ENGINEERING EXCELLENCE AWARD (EEA) COMPETITION – THE "ACADEMY AWARDS OF THE ENGINEERING INDUSTRY".

IDEA-2012

"SYSTEM OF THE YEAR AWARD":

OPERATIONAL EXCELLENCE, ENVIRONMENTAL STEWARDSHIP, ENERGY EFFICIENCY, & CUSTOMER COMMITMENT"

<u>2013</u>

IDEA

BRONZE AWARD: NUMBER OF BUILDINGS COMMITTED TO DE BEYOND NORTH AMERICA.

SILVER AWARD: TOTAL BUILDING AREA COMMITTED TO DE BEYOND NORTH AMERICA.

AWARD OF EXCELLENCE: FOR MUNICIPAL SCHEME SERVING MORE THAN 10,000 CITIZENS AT 3RD GLOBAL DISTRICT ENERGY CLIMATE AWARDS.

CERTIFICATE OF RECOGNITION: FOR INNOVATIVE PRACTICES.

CLIMATE CONTROL: THE BEST DISTRICT COOLING PROVIDER: AT CLIMATE CONTROL MIDDLE EAST.

<u>2014</u>

TARSHEED-KAHRAMAA: INDUSTRIAL BUILDING CONSERVATION AWARD.

IDEA: "SYSTEM OF THE YEAR AWARD": **OPERATIONAL EXCELLENCE, ENVIRONMENTAL STEWARDSHIP, ENERGY EFFICIENCY, &**

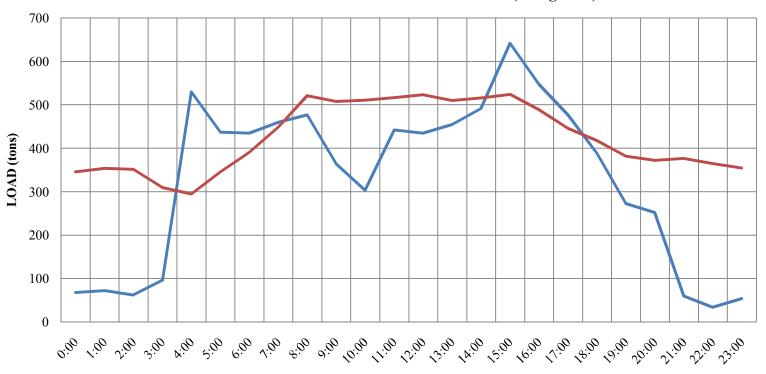
CUSTOMER COMMITMENT'

AWARDS

Current DC Challenges

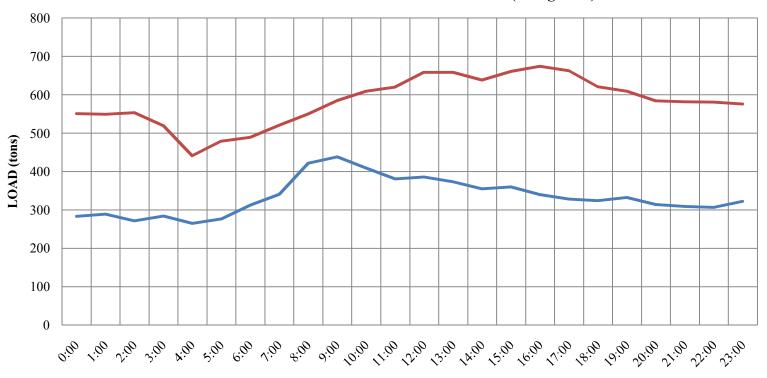
CURRENT DC CHALLENGES

- Water Resource Management: Authorities' Approvals.
- Power Availability.
- Land Availability.
- Space for TSE Polishing Units (RO) in Existing Plants.
- New Piping Distribution Networks.
- Utility Charges (Residential/Commercial/Industrial).
- Performance of Customers' Buildings.


Effects of Low ΔT on Energy Efficiencies

SUPPLY TEMP °C	RETURN TEMP °C	∆T °C	FLOW US gpm/ton	INCREASE IN PUMPING POWER KW
5.5	14.4	8.9	1.50	1
5.5	13.4	7.9	1.68	1.40
5.5	12.4	6.9	1.93	2.13
5.5	11.4	5.9	2.26	3.42
5.5	10.4	4.9	2.72	5.96
5.5	9.4	3.9	3.42	11.85
5.5	8.4	2.9	4.60	28.84
5.5	7.4	1.9	7.026	102.76

Good: Building Cooling Load Profile


HOURLY LOAD PROFILE - HIGH AT TOWERS (7 Aug 2011)

BAD: Building Cooling Load Profile

HOURLY LOAD PROFILE - LOW AT TOWERS (7 Aug 2011)

Opportunities for Cooperation among DC Providers

Opportunities for Cooperation among DC Providers

- Share of Knowledge & Experience.
- Interface of Piping Network for Back-up & Peak Loads.
- Utilization of DC Plants for Temp Cooling.
- Collective Collaboration with Authorities on Regulations, Standards, & Best Practices.

Connected Power Saving-Qatar

Mega-Watt

System Configuration	Qatar Current (800K TR)	Qatar ~ 2017 (1.5M TR)
Decentralized	1,768	3,315
District Cooling	800	1,500
Estimated Saving	968	1,815

Basis of Calculations & Assumptions:

- DC @ 1KW/TR.
- Decentralized @ 1.7 KW/TR.
- DC is 30% less than decentralized (diversity).

Power Consumption & CO₂ Emission Saving Qatar

Mega-Watt-Hr/Yr

System Configuration	Qatar Current (800K TR)	Qatar ~ 2017 (1.5M TR)
Decentralized	2,380,000	4,462,500
District Cooling	1,400,000	2,625,000
Power Saving	980,000	1,837,500
CO2 Emission Saving (Tons/yr)	500,000	937,500

Basis of Calculations & Assumptions:

- DC @ 1 KW/TR & 50% Utilization of total DC Capacity.
- Decentralized @ 1.7 KW/TR.

Anticipated Cooling Water Requirements Qatar

Million m³/yr

System Configuration	Qatar Current (800K TR)	Qatar ~ 2017 (1.5M TR)
Decentralized	13.3	33
District Cooling	10.7	26
Estimated Saving	2.6	7

Basis of Calculations & Assumptions:

- DC Companies' utilize Efficient Water Management Processes.
- 50% Utilization of total DC Capacity.
- Study/Survey of Decentralized Systems Water Performance is underway. Expected to consume 25% over DC.

Makeup Water & Discharge Quantities @ Different Water Sources

Million m3/yr

Water Source	Qatar Current (800K TR)	Qatar ~ 2017 (1.5M TR)
Potable	10	19
TSE-Direct	15	28
TSE-Polished	18	35

@ 50% Utilization of total DC Capacity.