

District Cooling Workshop

Wednesday 18/6/2014

Towards Cooperative District Cooling Society

KAHRAMAA DC workshop Doha, June 2014

DC Industry - TSE utilization concepts What to consider during implementation?

> Gerhard Bingel gbingel@nalco.com

Sr. Industry Development Manager MEA

- •Least Environmental affecting overall Solution
- Cultural considerations
- •BUT is a NEW Approach requiring Engineers to think differently about Past & Future water use and plant operation

Water utilisation in DC - GCC sitation in 2014

- QATAR Doha Municipal water use restricted by Ministerial directive
 - Alternative water/TSE mandate to DC industry introduced by Kahramaa
 - mandatory since Jan 2014 onwards
 - ASHGHAL MoE discharge limits currently reviewed and in final conclusion
- UAE Dubai driven by financial gains (high DEWA water cost)
 - TSE soft directive issues in 2010 Conversion period target for 2013/14
 - Discharge limits for sewer adopted for TSE in 2012 to 6000 ppm TDS
 - some DC companies started changing because of cost savings
 - Abu Dhabi lacking behind as water cost is low (subsidized)
- **SAUDI ARABIA** water shortage driven
 - TSE strategic use concept presented by NWC in 2010/11
 - No deadline by legislation, most projects government controlled
 - Water shortage drives projects towards TSE use KKIA, KAFD, Jabal Omar, Jeddah
- <u>Other GCC</u> mixed approach not driven by legislation yet

TSE as Makeup in DC – The PRO & CONs

Advantages

- Availability
 - Domestic TSE water generation
 - Cooling need in <u>regions with water</u> <u>scarcity</u>
- TCO Total Co\$t reduction
 - Municipal to TSE 20-80% reduction
- Sustainable solution

protects Environment and Energy resources

• Legislation compliance calling for alternative water use

Disadvantages

• TSE Water quality & fluctuation

make your system accepting variability NOT adopt TSE to system requirements

- **TSE supply issue** no storage
- Discharge situation
- DC operational adaption stagnancy needs to be addressed for both TSE use concepts
- Need better control/monitoring
- CAPEX OPEX Reliability Space – high CAPEX/RO plant reliability increased OPEX

2 Ways to utilize TSE as makeup – example 10 KTR (55 m3/h evaporation)

Polished TSE

- **Polishing plant** max 70% Recovery Membrane process (UF) + RO need footprint
- needs 102 m3 TSE/10 KTR
- COC 10-11 >> means 5,5 m3/h BD
- CT feed water quality is desal so of very aggressive nature
- Operational Risks
 High on RO polishing plant
 Low on CT
- TCO (W+WT): 12-21 QAR/1000 TR
- Saves 50 % to Municipal water

Direct TSE

- Used direct as CT-makeup less footprint, no CAPEX, min. adaption
- needs 83 m3 TSE/10 KTR
- **COC 3** >> means 27,5 m3/h BD
- CT feed quality varies needs Scale/corrosion & microbio control
- no pre-treatment elevated on CT needs good treatment, is compensated by good monitoring
- 9 QAR/1000 TR
- Saves 76 % to Municipal water

TSE implementation DOHA – The Financials

TSE is free of cost – Polishing cost range 1,5 - 3,5 QAR/m3 (size dependent)

Calculation utilizing TSE					TSE cost:	0,000	QAR/m3	Polished TSE cost	2,5	QAR/m3
								Municipal	5.00	
The study did not take into consideration the availability of TSE on all sites								water	5,20	QAR/m3
We did not take i	nto consideration th	e location of poli	shing plant for su	upply for all plants						
								Water treatment cost QAR/TR		
сос	7	11	3		Water cost QAR/TR			0,0035	0,003	0,009
System	l/TR with Municipal	I/TR for Polished TSE	I/TR for Direct TSE	Total PRODUCTION TR	QAR/TR for Municipal	QAR/TR for Polished TSE	QAR/TR for Direct TSE	TCO QAR for Municipal	TCO QAR for Polished TSE	TCO QAR for Direct TSE
DC sytem	6,41	6,05	8,25	87.600.000	0,0333	0,0151	0,0000	3.226.483	1.587.750	788.400
		10,15 on TSE	m3/h water demand		64,1 m3/h	60,5 m3/h	82,5 m3/h			
					full TSE need	102 m3/h	Total TCO	3.226.483	1.587.750	788.400
									1.638.733	2.438.083
		annual load						COST TO:		
	TR plant	50,00%						Municipal	49%	24%
	20.000,00	87.600.000						Polished TSE		50%
							QAR/TR	0,037	0,018	0,009

Polished TSE - 10.000 TR plant

Direct TSE - 10.000 TR plant

Mechanical Challenges - TSE

System Design

- > no real changes needed from Municipal feed
- > more constant operation is beneficial
- Polished & Direct TSE is <u>more corrosive</u> than Municipal water if stagnant

• Prevent longer stagnancy in flow

- o Common header vs. Modular
- GRP piping is more suitable from corrosion point
- CT designs: better adopted but no special design
- Implement lay-up procedures
 for chillers not in service for more than a week
 - $\circ~$ empty water boxes , flush them if out of service
 - Condenser water box/tube sheet coated
- **TES is best suitable for utilizing TSE** as it allows more continuous operation with better load management

Operational Challenges - TSE

- **System Operation** out of service chillers stagnant flow/
 - Chiller isolation/flushing procedures lay-up flushing
 - CT basin maintenance biocide lay-up
- Polishing plant an UF-RO is best practice
 - Needs tank capacity for inter mediate storage
 - UF/RO requires monitoring for maintenance planning
 - CONTINOUS operation important (preservation procedures needed)

<u>CT operation monitoring & control</u>

- Blowdown control
- Proper dosing control of treatment and biocides
- Monitoring of Perfomance Indicators On-line >>> no Surprise
- Operator involvent and training

TSE - How to meet the Discharge Limits

Discharge the Blowdown to the:

- <u>MunicipalSewer system</u>
- Surface/storm water system to the sea or deep well

BD quality: Polished 3300 ppm vs. Direct 4500 ppm

lower COC with Direct TSE

- Costly chemical program.
- High TSE Demand at 2 cycles 33 % more make up compared to cycles 3
- Meets current discharge limits

Dilute the Effluent

- Operating at maximum COC
- Most cost balanced choice
- Requires 20-50% Dilution water from original needs.
- <u>use TSE for dilution</u> (best practice)

Discharge Limits

Work with legislators •adopt limits

DUBAI municipality raised TDS 6000 ppm

•Sewer discharge no issues with municipal WWTP •Sea water discharge MoE approve discharge to surface/storm water system

Comparison of both Concepts – real plant experience

Topic

Polished TSE

- TSE supply ٠
- Corrosion •
- water utilisation ٠
- CT feed water • quality
- •
- •
- TCO water/WT •
- **OP-Results** • Reference

• water quality is desalinated and stable - but more aggressive nature, limited microbio

multiple intermediate tanks

• 3-5MPY – within Chiller specs

• COC 10-11 >> 102 m³/KTR

- **Operational Risks** High on UF/RO CT risk low
- **Conversion needs** High space/CAPEX, med.OPEX
 - 12-21 QAR/1000 TRh
 - concerns on membrane live

Direct TSE

- 1 "day" tank 50-100 m³
- 3 MPY above Chiller mfg. specs
- COC 3-5 >> 83 m³/KTR
- Fluctuating on CT makeup in TDS/chlorides/phosphates/N >> Cu/Scale/microbio protection
- No RO CT increased risk dealt with by treatment/monitoring
- No space/CAPEX, med.OPEX
- 9 QAR/1000 TRh
- 5 plants in GCC, less than 3 year
 2 plants operate more than 4-6 year with proven results, 3 plants 1-2 yr

TSE Global - GCC Experience in DC

- US University campuses, Hotels, (Refineries)
- Europe Paris/France, etc.
- Middle East UAE, SAUDI with Doha starting
 - Dubai Festival City (direct TSE)
 - Riyadh Airport (direct TSE)
 - **Empower** (use polished TSE in 2 plants)
 - KAFD Riyadh (direct TSE project)
 - Jebel Omar (direct TSE project)
 - **EMICOOL** DIP, Motor city (both TSE concepts)
 - Doha Hotel (polished TSE)
 - **DUBAI Airport** DAFZA Freezone (both TSE concepts projects)
 - EMAAR Burj Khalifa (polished TSE project)
 - University complexes SAUDI, etc. (both TSE concepts in project phase)

Thank You

» QUESTIONS !

gbingel@nalco.com

Case History 1 – Al Futtaim DFC plant

Dubai Festival City - direct TSE as

- 50.000 TR installed 10 Packaged units
- YORK STD wall Cu enhanced tubes SPIG towers GRP
- Nalco changed 2008 from DEWA water to TSE
- 100% direct TSE as MU for > 3,5 years
- Eddy Current Cu tubes measured annually 98,1% found at < 10% metal loss at the end of 3 years with TSE - <u>3 years no tubes replaced</u>
- 1,2 M m3 water and 6 M AED saved/year

Savings per Cooling tower ~ 203,000 m3/Y of fresh Water TCO reduction of ~ 1,72 million AED/Year (full load, incl. treatment cost)

WT cost: 345,000 AED/year

Case History 2 – Ryiadh Airport

SAUDI Oger - KAIA with direct TSE

WATER

ENERG

AIR

- DC system 35 m3/h max. evaporation
- Changed from RO permeate to direct TSE water from KAIA own WWTP
- Copper tubes TSE 600-800 μS/cm COC 4.5-5 TH: 150 ppm, Cl: 100 ppm, PO4: 0,5 ppm, NH4: 2 ppm
- Implementation started in June 2010
- Corrosion rate 2,9 mpy no deposits visible
- Approach, fouling factorr not increased

<u>Savings</u> ~ 321,900 m3/Y of fresh Water <u>TCO reduction of 2,288,000 SAR/Year</u> WT cost: 850,000 SAR from previous 305.000 SAR